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The linearized flow of a dissociating gas 

By J. F. CLARKE 
College of Aeronautics, Cranfield, Bucks 

(Received 1 August 1959) 

The equations for planar two-dimensional steady flow of an ideal dissociating gas 
are linearized, assuming small disturbances to a free stream in chemical 
equilibrium. 

As an example of their solution, the flow past a sharp corner in a supersonic 
stream is evaluated and the variations of flow properties in the relaxation zone 
are found. Numerical illustrations are provided using an ' oxygen-like ' ideal gas 
and comparisons made with a characteristics solution. The flow past a sharp 
corner can be studied in a conventional shock tube and it may be possible to 
verify the present theory experimentally. In  particular it may prove feasible to 
use the results to obtain a measure of the reaction rates in the gas mixture. 

1. Introduction 
When the chemical composition of a gas changes by chemical reaction a further 

source of dissipation is present in the flow field. The reactions are natural, 
thermodynamically irreversible, processes and as such lead to the production of 
entropy. The important difference between this type of entropy production and 
that associated with the transport phenomena is that it does not depend explicitly 
on the gradients of velocity, temperature and concentration. Thus its influence is 
not necessarily confined to the interior of boundary layers or shock waves, but 
may spread over the entire flow field. 

The equations governing the flow of a chemically reacting gas mixture have 
been derived previously, for example, Kirkwood & Wood (1957), and Clarke 
(1958a). In  the present paper an attempt is made to consider flows with small 
perturbations, dealing only with the two-dimensional steady problem. The treat- 
ment is simplified by considering the dissociation reaction in a symmetrical 
diatomic gas A,, each A ,  molecule being made up from two A,  atoms. I n  the 
pure gas the reaction is ks 

A,+A3=2A,+A3. kr (1) 

The species A,  can be either A ,  or A,, either is assumed to be equally effective, 
and k, and k, are the overall specific reaction rate constants for the forward and 
reverse reactions. 

Further simplification is obtained by assuming that A ,  is an ideal dissociating 
gas (Lighthill 1957). In  that case, writing c, for the equilibrium atom mass 
fraction of A ,  atoms in the mixture, we have 

CZ/(l- 4) = (PdRT/PWz) exp ( -DW,/W ( 2 )  
37 Fluid Mech. 7 
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( R  is the universal gas constant, T the absolute temperature, p the pressure, W, 
the molecular weight of the molecules and D the dissociation energy per unit 
mass). pd is a characteristic dissociation density which, for the ideal gas, is 
assumed to be constant. 

The flow equations are linearized, assuming small perturbations to the mean 
flow. Explicit solutions for the variation of pressure, density, atom concentration 
and temperature on the wall behind a sharp corner in supersonic flow are found as 
an example. It is found that the zone of influence of the corner is bounded 
upstream by the ‘frozen flow’ Mach line and also that the flow is not of the simple 
wave type as it would be in an ordinary inert gas flow. 

2. Two-dimensional steady flow 
In  the particular case of two-dimensional steady flow, with velocity com- 

ponents u and v directed along the x- and y-axes, respectively, the equations for 
a dissociating diatomic gas become* 

au au ap 
pu-+pv-+- = 0, 

ax ay ax 

av av ap 
pu-+pv-+- = 0, 

ax ay ay 
ac ac 1 
ax ay 7 

u-+v---{(K(1-c)-C~} = 0, 

as as 1 
ax ay 7 

TU - + Tv- +- {K( 1 - C) - c’} (,u~ -,u,) = 0. 

(3) 

( 4 )  

Equations (3) and (4) are the momentum equations (p  is the mixture density) and 
equation (5) is the continuity equation for the atomic species (mass fraction c). 
7 is a characteristic reaction time, defined in terms of the specific reaction rate 
constant for recombination, k,, as 

7 = Wt/4k,p2(1 +c), (8) 

(k ,  is measured in (mole/unit volume)-2 per unit time). The quantity K is defined as 

K = ( W , / 4 P l C , ) ,  (9) 

and can be related to the atom mass fraction under equilibrium conditions in some 
circumstances. For example, if we choose to evaluate an equilibrium composition c, 
a t  local values of p and T then it can be shown that K = (1 + c )  c:/( 1 - c:), c being 
the actual concentration of atoms under these conditions (Clarke 1 9 5 8 ~ ) .  This 
form will be found useful below, but is discarded in the linear theory in favour of 
evaluation of c, a t  local pressure p and entropy s. 

* A brief account of the equations (5), (6)  and (7) is given in Appendix A. 
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Equakion (6) is a rearranged form of the overall mass conservation equation 
(Kirkwood & Wood 1957). cr is a function of the thermodynamic variables only. 

where 

(af is the volume expansion coefficient and C,, the specific heat at constant 
pressure, both for the mixture in a chemically frozen state.) 

The thermal and caloric equations of state for the ideal dissociating gas are 
given by 

h = (4 + C )  (R/Wz) T + cD, (12) 

respectively. h is the specific enthalpy and D is the dissociation energy per unit 
mass.* cr can be evaluated via equations (lOa), (l l) ,  (12). In  the present case 

CT = [(DWJRT) + 11 [4 + ~ 1 - l -  [1+ ~ 1 - l .  (13) 

Equation (7) is the entropy equation, derived from the energy equation 

ah ah ap ap 
pu-+pv- -u- -v -  = 0, 

ax ay ax ay 
and the thermodynamic equation 

T d s  = dh-p-'dp-(pu,-pu,)dc. (15) 

p l  and p2 are the chemical potentials of atoms and molecules, respectively. It can 
be shown (Clarke 1958a) that 

if c, is evaluated at the local p and T values. 

eliminatingp between equations (3), (4) and (14) shows that 
Two important results follow from the above set of equations. First, 

h + ~ ( u 2 + v 2 )  = const. = h, (16) 

along streamlines, as in the inert gas-flow case. Secondly, dehing the vorticity 

av au c =  --- 
ax ayy 

c as 

equations (3), (4) and (15) show that 

ah as ac 
( U 2 + V 2 ) f <  = --0+T-+(p1-p )-. an an an 

* Other authors have made use of the dissociation energy per molecule, written as 
d usually. The reIation between D above and d is D = Nod/W2 where No is Avogadro's 
number. The quantities W,D/R = d / k  (k = Bo1tzma~'s  constant) have the dimensions 
of temperature and are sometimes written as T,. For oxygen T, = 69,000 OK. 

37-2 
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The operator a/an is equal to (ulq) a/ay - (v/q) apx, where q2 = u2 + v2, and denotes 
differentiation normal to the streamlines. Equation (18) is Crocco’s theorem in 
two dimensions, generalized to include the case of chemical reactions within the 
flow field (see Hayes & Wu 1958). h, will be assumed constant everywhere (the 
flow is assumed to originate in a region of constant stagnation enthalpy). Using 
equation (15u), equation (18) in these circumstances becomes ~. 

It follows that 6 is only zero when the flow is in complete chemical equilibrium 
(c = c,) or when the flow is chemically frozen (c = const.). (Note that equations (7) 
and ( 1 5 4  show that s = const. everywhere in these cases.) 

Suppose now that the actual atom concentration c differs but little from the 
local equilibrium value evaluated a t  local p and T, i.e. put 

c = c,+E, C < c,. 

If we assume in addition that C < 1 - c,, the entropy equation (equation (7)) with 
the aid of equation (15a) can be written approximately as 

where 7, = WZ,( 1 - ce)/8k,.p: c,. (p, is the density which would occur at the local 
values of p and T if the local atom concentration was equal to the equilibrium 
value c,.) This result indicates that the entropy rise along streamlines is of second 
order in the deviation of concentration from its equilibrium value at local values 
of p and T. We now make a slight but decisive change in the interpretation of the 
local equilibrium state. It is assumed that c, from now on refers to an equilibrium 
composition at the local pressure and entropy values, and that c differs from this 
c, by an amount c‘, i.e. we put 

(21) c = c,+c‘. 

By analogy with the case for which c, is evaluated at local p and T, we now 
write the chemical reaction rate term as 

(1/7) {K( 1 - C) - C2} 2 - c’/T’, ( 2 2 )  

thereby defining 7‘. (It does not seem possible to evaluate r’ apriori in the same 
way as with 7, above, since with c, evaluated at local p and s, K in equation (9) no 
longer becomes a simple function of concentrations.) Then equations ( 5 )  and (6) 
can be written in approximate form, 

ace ace acl acl c~ 
ax ay ax ay 

ax ay (a, ax ay : ap aP u-++v-+paZ -+- -paf c- = 0, 

u-+v-+u-+v-+$., = 0, (23) 

(24) 

and by comparison with equation (20) we write 

(-g2) as as 
ax ay 

u-+u-,-o -7 . 
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Since c, now refers to equilibrium at local p and s values, 

581 

dc, = ( z ) 8 d p + ( z )  ds. 
P 

Writing in future (ace/aP>8 = 

for brevity, equations (26) and (26) give 

ace ace R c12 ace 
u-+v--=A u-+v- +o-- - . ax ay ( 2 3 [w, r ’ (as)y l  

Equation (23) can now be written approximately as 

act act CI 
h u-+v- +u-+v-+- = 0 ( 2 2) ax ay 

( 2 6 )  

(26a) 

since the term in c12/r’ is of a smaller order of magnitude than cl/r’. (We show 
below that (&,/as), is less than order unity.) 

In order to find the quantity h we proceed as follows. We can write 

where the subscript e is added to the last partial derivative to emphasize that it is 
to be evaluated with c following its equilibrium composition. Under conditions 
of chemical equilibrium ,ul = ,uz and equation (15 )  becomes 

Tds  = dh-p-ldp. 
At constant entropy, therefore, 

and so (29) 

h can now be found via equations (28), (29), ( l l ) ,  ( 1 2 )  and ( 2 ) .  For the ideal 
dissociating gas equation (2) shows that 

where we now write D’ for W, DIRT, and equation ( 1 2 )  shows that 

The h a 1  result for the ideal gas is therefore 
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In  order to find (ac,/as), we first write it in the form 

T = T,(l+T'), 

P = P,(l+P'),  
u = U(1 +?&I) ,  

2, = U d ,  

whence it follows, since (as/aT),,, = (ah/aT),,,/T from the thermodynamic 

' 

equation above, that 

P, e 

From the results given above, the value of the derivative in the ideal dissociating 
gas is 

It can be seen that B(ac,/as),/W, is roughly of order D'-1. For an oxygen-like 
ideal gas D' = 59,00O/T so that D' is roughly of order 10 in the interesting range 
of dissociation. 

(33) 

J c = c, + c', 

c, = c, + c:, 
where all the primed quantities are very much less than unity. Choosing some 
suitable characteristic length* L, and writing 

the flow equations can now be expressed in dimensionless form. In  writing down 
these equations we assume that squares and products of disturbance quantities 
are negligible to a fist order of approximation. Equations (3) and (4) become 

x =  Lt, y =  Lq, (34) 

* There is no geomtric length characteristic of the flow round a sharp corner. L is 
entirely arbitrary and is introduced here solely for convenience so that the equations can 
be Written in dimensionless form. 
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Since h will not differ markedly from its free-stream value, equation (27) becomes 

where suEx 03 indicates evaluation at free-stream conditions and we write 

r = 7, up, (38) 

(39) 

where 7, is taken as the mean value of r', i.e. 

7, = AV ( - c'T{K( 1 - C) - C2) - l ) .  

(I' is the ratio of a characteristic reaction time to a characteristic flow time.) 
Likewise equation (24) reduces approximately to 

We may remark here that at, the frozen sound speed, is defined as 

(suffixes s and cindicating that entropy and concentration are held constant during 
the differentiation). It readily follows from equation (15), which may also be 
written as T ds = de +pd(p-l) - (,a1 -,az) dc 

(e is the specific internal energy = 3(R/W2) T + CD for the ideal gas), that* 

Differentiating equation (40) with respect to 7, the terms in azp'/agaq and 
aeu'/i3caq can be eliminated in terms of derivatives of v' by using equations (35) 
and (36). The result is 

The c' term in equation (42) can be eliminated by using equation (37) differentiated 
with respect to 7 and the result is 

* At constant 8 and c the thermodynamic equation gives 

[1 - -P(WP)T ,Cl  d;O = P ( a h / m , . C ,  

11 -PaP-l(waP)T,,l dP = P2P-'(ae/aT)p,c. 
But for the ideal gas h is not a function of p and e is not a function of p under 
circumstances. The result given in equation (41) follows a t  once. 

present 
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But it has been shown by Clarke (1958a) that 

1 + ~ m a ; m  g m h m  = (a fm/aem12t  (44) 

where a,, is the equilibrium speed of sound in the free stream. Defining the frozen 
and equilibrium Mach numbers 

Mf = U / a f m ,  Me = U / a e m  (45) 

it follows that equation (43) can be rewritten as 

In order to find the equation satisfied by the pressure perturbation, the process of 
elimination of the variables can now be repeated in precisely the same way as that 
outlined above, only this time a start is made by differentiating equation (40) with 
respect to 6, and it then readily follows that p’ satisfies an equation identical in all 
respects with equation (46). 

The two equations will now be used to find the flow behind a sharp corner in 
a supersonic stream. Before doing so, however, it  is interesting to note that in the 
limiting cases of I? = 0 and I? = co, equation (46) reduces to the ordinary wave 
equation for sound propagation at  the equilibrium and frozen sound speeds, 
respectively. In  practice 0 < I’ < co, and it is with these conditions that we will 
deal below. 

4. Supersonic flow round a sharp corner 
The flow is assumed to be supersonic in the sense that both M, and He are 

greater than unity. Figure 1 is a sketch of the general configuration. At point 0 
the flow turns through asmall angle - 8, so that the equations for v‘ andp’ derived 

U- 

/ / / / / / / / / / /  / /  

FIGURE 1. Supersonic flow round a sharp corner. 

above can be assumed valid descriptions of the field. The flow from 
f: = 0 is uniform and quantities there will be denoted by suffix co. 

= -a to 

The boundary condition a t  the wall is given by 

v‘ = -tanO(l+u’), when 7 = -ctan8, 

but to the present order of approximation this can be replaced by 

d2: -8, when 7 II 0. (47) 

* The writer’s attention has been drawn to a recent paper by Moore & Gibson (1959) in 
which a similar equation is derived by a different approach. These authors solve a similar 
problem to that treated below by approximating equation (46) in the form of the telegraph 
equation via a suitable co-ordinate transformation. 
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Since the flow is supersonic, all the disturbance quantities are identically zero 
upstream of the corner* and, accordingly, we define the Laplace transform of a 
disturbance quantity by 

(where s' is any disturbance variable). 
It follows that V satisfies the equation 

where z is the Laplace operator (see equation (48)) and r, satisfies a similar 
equation. In  equation (49) 

B2-M;-1, f -  B,2=MZ-1, B'=B,Z/B?> 1.  (50) 

We choose the following solution for 8, 

V = const. exp (-zB [-I B 2 + r z  2i 7) 
f i+r2 ' 

since it represents an outgoing wave motion. The transformed boundary condition, 
equation (47), is qZ, 0) = - q Z ,  

whence 

Since equation (49) is also satisfied by 
be determined), 

we can write (where A is a constant to 

B2+rz 4 
P = AexP ( - z B , [ 3 4  7) .  

The transformed version of equation (36), however, is 

and it readily follows from equation (51) that 

Dehing a pressure coefficient C, as 

the value of this quantity on the wall (7 = 0 to a sufficient order of accuracy) can 

* See remarks made in $5 below. 
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The transform on the right-hand side of equation (54) can be inverted (Erddyi, 
Magnus, Oberhettinger & Tricomi 1954) and we find that 

C,, = - (zB/B,) exp [ - (B2 + 1) 5/2r] Io[(B2 - 1) &prl 

+/yexp[-+(B2+ 1) W I I ~ [ ~ ( B ~ - -  1) W I ~ W  ) .. (55) 

I, is the zero-order modified Bessel function of the first kind. Figure 2 shows 
(BtC,,/20) + 1 plotted against x / r ,  U( = [/I?) for a typical value of B2, namely 
1-5. With this value for B2, Me = 2-12 and Nf = 1-83, respectively, if 

(afm/aem)2 = 1.35. 

This value of the speeds of sound ratio can arise, for example, at a pressure of one 
atmosphere and temperature of 4,250 OK in an 'oxygen-like' ideal dissociating 
gas (see Clarke 1958~). 

/ o o o  
0 20 0 

p rl + 0 1 0 0  t----l Asymptote 

2/ 
0 0 4  08 1 2  1 6  20 

X I T m  u 
FIGURE 2. Variation of pressure on the wall; B2 = 1-5. 0 = characteristics solution. 

It can be seen from figure 2 that, in contrast to the inert gas Prandtl-Meyer 
flow round a corner, the pressure is not constant on the wall downstream of the 
point 0, but rises steadily as x increases. It can be shown that C,, + - 2S/Be as 
[/I'--f m. The integral in equation (55)  can be rewritten* as 

exp [ - +(B2 + 1) W ]  Io[+(B2 - 1) W ]  d W .  
B-l - 6 

When c/I' --f 00 the asymptotic form of I, can be used both in the first term of 
equation (55)andintheintegralabove (i.e.I,(a) N (2;rra)-iexpa). Theasymptotic 
form of C,, is then given by 

-~~c,,/2e [ 1 ~ ( ~ 2 -  l ) t ~ / r ] - ~ e x p ( - ~ / r ) + ~ - 1 - ( ~ 2 -  I)-+erfc((/r)+, (56) 

where erfc is the complementary error function. The result quoted above follows 
in the limit as t/I' -+ co, and (B,CP,/2O) + 1 tends asymptotically to the value 
0.183 in figure 2. The percentage variation of pressure behind the corner is quite 
significant therefore. 

< co. It seems 
reasonable to suppose that the continuous pressure rise behind the corner results 

As remarked in $2, the flow is not irrotational for 0 < 
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from the reflexion of the primary (expansive) disturbances from the vortex sheets 
as compression waves. The vorticity arises as a direct consequence of the (thermo- 
dynamically irreversible) chemical reactions. 

In  order to find the density variations in the flow it is observed that the mass 
conservation equation in its more familiar form, namely 

reduces to 

in the present approximation. Using equation (35) it follows that 

FIGURE 3. Variation of density on the wall; B2 = 1.5, (af,/aem)* = 1.35. 
o = characteristics solution. 

The transform of the density increment, p ,  is therefore (using equation (58)) 

p = +c, -z-yav/aT). 

In  particular i t  is found from equations (54) and (51) that, on the wall, 

The first term here is simply (+&I?) times the pressure coefficient transform. 
Noting that 1 + rz is the transform of I?-lexp (-(/I?) and making use of the 
convolution theorem, it can eventually be shown (see Appendix B) that 

- Bfph/8M; = exp [ - (B2 + 1) t/21?]Io[(B2- 1) </2l?] 

The value of - (BfpL/8M,2) - 1 is shown plotted against x / r ,  U in figure 3 for 
B2 = 1.5 and (a,,/aea)2 = 1.35. By similar methods to those used for C,, we can 
show that ph -+ -8M,2/Be as x/r, U -+ m. It is observed that the variation of 
density behind the corner is smaller than that of the pressure in the present case 
and that p; decreases continuously along the wall. 

The values of atom concentration on the wall can be found as follows. Equa- 
tion (37) can be rewritten in the form 

a aP' -(C'exPt/r) = - P a ~ a e x P ( t / ~ ) -  a t  a t  
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and it follows after an integration by parts that c‘ on the wall is given by 

Making use of the expression for C,, (equation (55)) the expression for c; reduces 
to  (see Appendix B), 

c:, = (p, U2h,e/Bj) exp [ - (B2 + 1) LJ2r]Io[(B2 - 1) @H?]. 

CL - (Pa  U 2 ~ , W j )  [n(B2 - 1) E F I 4  exp ( - Em, 

(59) 

(60) 

The asymptotic value of c; as [/I’ -+ co is therefore 

showing, as we might expect, that cL -+ 0 and the concentration approaches a new 
equilibrium value. 

The ‘small disturbance’ version of equation (27a)  can be written as 

where it can now be verified (using equation (59)) that the last term there can be 
neglected in a first approximation, at  least near the wall. (There seems to be no 
reason why it should not be negligible everywhere, but equation (59) verifies that 
it is so only near the wall.) Then 

cb, = p,h,p:, = +pa U2h,Cpw. (61) 

From the definitions of ci and c’ (note c-c, = ci+c’) and using the results 
equations (60) and (6l) ,  it now follows that 

c, - c, = - (p,hrniv; e(4 + c , ) / 3 ~ ~  ) 

c, is the actual atom concentration at the wall and use has been made of the 
definition of a;, from equation (41). pooh, can be found from equation (30). 

From the previous results the temperature variation along the wall can be 
found, using the thermal equation of state (equation (1  1)) for the mixture. The 
dimensionless temperature increment is given to a sufficient degree of accuracy by 

1 ’ c,-c, 
1 +c, T:, = Pw-Pw--- (63) 

As an illustration figures 4 and 5 show (c, - c,) and (T, - T,) ( = T,Tk) plotted 
against x/r, U for a 8 of 5”. The values ofp, and T, are taken to be one atmosphere 
and 4250 OK, and the gas is an ‘oxygen-like’ ideal dissociating one. In  that case 
D‘ in equation (30) is equal to 59,OOO/T, = 13-68 and with pd = 150g/ml., 

The temperature rises steadily behind the corner (after the abrupt drop at the 
corner), approaching the asymptotic value shown in figure 5. The rise in tem- 
perature is a direct result of the fall in atom concentration. The recombination 
reaction results in the liberation of dissociation energy which reappears in the 
gas as random, thermal energy. 

C, = 0.78. Thusp,h, = 0.086. 
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The energy equation (equation (14)) in the small disturbance approximation 

(64) 
shows that 

(N.B. C,, = pressure coefficient a t  the wall.) Thus the enthalpy on the wall rises 
continuously after its abrupt fall at the corner and, in conformity with the 
adverse pressure grgdient, the velocity must decrease as x/ r ,  U increases (see 
equation (16)). The velocity on the wall behind the corner is always greater than U ,  
however. 

hw - h, = 8UzCpw. 

Asymptote ~ 

- 1  
- 002 

8 
0 

-001 

I I I J 
0-4 0.8 1.2 1-6 2.0 

0 I /  I 
0 

X I 7  m u 
FIGURE 4. Variation of atom mass fraction on the wall; Be = 1.5, (af,/a,,)e = 1.35, 

pm = 1 atm., T, = 4250 OK, c, = 0.780. o = characteristics solution. 

21’7 m u 
FIGURE 5. Variation of temperature on the wall; Ba = 1.5, (af,/aeW)a = 1.35, 

p w  = 1 atm., T, = 4250 OK, c, = 0.780. o = characteristics solution. 

From the values of p ,  T and c computed above, the value of r, from equa- 
tion (39) can be calculated. In  the present case it is found that r, = 3.85 x 109/kr,. 
(It is found that r’, of which r, is the mean value, varies by about 5 10% for 
0 < x / r ,  U < 2.) Since krmaybeanywherein therange 1014-101~m1.~/mole~sec, 7, 

may be anywhere in the range 40,usec to 0*04,usec. For the example quoted 
U N 3 x 105 cm/sec, so that x / r ,  U = 1 corresponds to an x of between 12 to 
0.012 cm. The length scale of the relaxation zone is seen to depend quite critically 
therefore on the value of krm. Thus if the density increment ph could be measured 
(with an interferometer, for example) it should be possible to obtain a reasonable 
estimate of the magnitude of kr,. 

Conditions like those adopted to illustrate the present theory could be achieved 
in the zone of equilibrium flow behind the primary shock wave in a shock tube. 
The feasibility of checking the theory by these means is being investigated. 

The linearizations which have been made in 3 3 would appear to be justified by 
the results obtained in the present section, provided both Mach numbers, M, and 
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Me, are neither too large nor too near unity. However, as T, becomes very small 
the gradients of velocity, temperature, etc., become very large in the streamwise 
(roughly, the x-wise) direction and it seems highly probable that it would be 
necessary in such cases to take account of the transport phenomena in the very 
short relaxation zone behind the corner. This question is, however, outside the 
scope of the present work. It should be reiterated that no account has been taken 
of the energy interchanges which occur in the internal modes of the-molecules. 
The effects of these internal relaxations are ordinarily assumed to be negligible 
in the region of appreciable dissociation, but the present simple theory may be 
modified to take account of their presence and so provide a check on their relative 
importance. 

5. Further remarks on the flow round a corner 
The previous section has been almost entirely devoted to a discussion of the 

variations ofp, p, T, etc., on the wall. This is primarily because it is much easier to 
evaluate these quantities analytically there, but solutions for the whole flow 
field can be obtained. In  particular, the inversion of the exponential term in the 
transform of ;ii and can be accomplished (Morrison 1956). Reference to 
Morrison’s paper will show that the final (physical plane) values for the distur- 
bance variables would, however, be in the form of very intractable expressions. 
It is hoped that the simpler discussion of flow at (and hence, as can be seen from 
the form of the equations, also near) the wall will be of some interest. 

Finally, we may note some general results from the solutions obtained. The 
Laplace inversion theorem shows that 

(a  is a real number greater than the real part of the singularities in the integrand.) 
Closing the straight line contour with an infinite semicircle to the right, it can be 
seen that integration along the semicircle is equivalent to that on the original 
contour. The index of the exponential on the new contour tends to 

IZI exp [(i 4 (6 - B,r)l 
as 1x1 + co. Since - +n < arg z < in, the integral approaches zero, therefore, if 

It follows that the effect of the corner is first felt along a line through the corner 
inclined a t  an angle sin-l(Mfl) to the free stream (i.e, the ‘frozen’ Mach angle). 
In  contrast to the inert (or equilibrium) cases, it also follows from the integral 
above that the disturbance is not constant among characteristic lines passing 
through the corner (Kirkwood & Wood 1957, have shown that the characteristic 
directions are defined by the local values of M, in a reacting system). This result 
is in line with the general result, quoted by the above-named authors, that simple 
wave flow does not exist in a reacting gas mixture. A possible physical explana- 
tion of this phenomenon in two-dimensional flow has been given after equation (56) 
above. 

C-Bf?j < 0. 
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In order to investigate the Aow in the vicinity of the equilibrium Mach line 
through the corner we may proceed as follows. Let us consider the pressure 
coefficient, which, from equations ( 5 2 )  and (53), is given by 

where we have written rz = w ,  t/l? = and y j r  = 7'. Then it is convenient to put 

(66) C-T'B B = e-7'Be = 6 f 

and to rewrite the integral in equation (65) as 

x exp [Wg( 1 -Ad(%)]] $. (67) 

In this form a solution valid for large values of and small values of 6 can be 
obtained by the method of steepest descents. The index of the second exponential 
term in equation (67) is not a particularly manageable function of w but fortu- 
nately it turns out that w = 0 is a saddle point. The appropriate steepest path 
comes from R1 w = - co below the real axis, approaches and leaves w = 0 along an 
approximately parabolic curve given by Im w = 2 ( - R1 w)&and proceeds towards 
R1 w = - co above the real axis. It includes a semicircular identation to the right 
of the simple pole at w = 0 and can be reconciled with the original inversion con- 
tour. Then we can write 

W {  1 - B-lJ[ (B2 + w ) / (  1 + w ) ] }  = - is2, 

where s is a real quantity, and i t  follows that 

(68) 
The term in braces in this integral must be expanded as a power series in the 

real variable s. A solution which is physically significant can be obtained from 
equation (68) when it is recognized that the expansion of the term 

in the second exponential begins (isB2)/J(B2 - 1). Then the leading term of the 
integral in equation (68) can be written as 

@ J W 2  + w)/( l  +@)I 

'-Irn exp { - +Fs2 + is6B/J(B2 - l)} (sB)-l ds 
27ri -, 

= Sow exp ( - +%s2) sin {sSB/,/( B2 - 1 )} s-1 ds 

1 
2B 

= - erf [S/J{25'( 1 - B-2)}]. 

The final solution for Cp can be written out in terms of x, y, T,, etc., and is 
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Recalling the definitions of f ‘ ,  I?, etc., equation (69) may be expected to give an 
indication of the variation of C, on either side of the equilibrium Mach line, 
provided that x 3 r, U. (The writer is indebted to Prof. Lighthill for suggesting 
this approach to the problem.) 

It should also be noted that the contour in equation (65) can be deformed into 
a single circuit embracing the branch points at w = - 1 and - B2, plus a single 
circuit surrounding the pole at w = 0. Then it follows that the latter circuit gives 
rise to the dominant contribution (namely E l ) ,  since any contribution from the 
former must be 0 (exp ( - c)), when 7’ is appreciably smaller than C/Be, and this 
is negligible when f‘ 9 1. 

It follows from equation (69) that at distances from the corner large compared 
with the characteristic chemical length r ,  U ,  a smooth but quite rapid fall of 
pressure occurs across the equilibrium Mach line. The pressure coefficient would 
appear to reach its ultimate, equilibrium, value of -2BIB, without falling 
markedly below this, in contrast to the situation occurring on and near the wall. 
There, it  will berecalled, the pressure drops discontinuously across the frozenMach 
line to its frozen flow value, C, = - 2B/B,, thereafter rising steadily until the final 
equilibrium value is reached some way downstream. Equation (69) suggests that 
less and less pressure drop occurs across the frozen Mach line as distance from the 
corner increases, the majority of the decrease arising in the region centred about 
the equilibrium Mach line. The sharpness of this latter pressure drop for any 
given x and y is increased by a reduction of r, and it seems that the passage 
towards the full equilibrium flow limit of r,+O occurs quite smoothly. The 
centring of the pressure drop about the equilibrium line will, however, occur for 
any value of r,, provided one is far enough away from the corner. 

It is interesting to note that the dissipative effect of the chemical reactions in the 
gas smears the pressure drop over a wider and wider region around x = yBe as 
x increases, under any given conditions. Thus, far from the corner, the flow 
appears to be expanding through a fan of waves, even without the non-linear 
flattening effects which would be present in practice. One may conclude that 
such non-linear, convective terms will act to flatten out the pressure drop still 
further in these regions. The present analysis is the two-dimensional analogue of 
Chu’s (1957) treatment of the one-dimensional unsteady piston problem and the 
conclusions are in agreement with those found in that case. 

6. Comparison with characteristics solutions 
Since the appearance of the first version of the present work (Clarke 1958b) 

some characteristics solutions of the flow round a corner have become available 
(Cleaver 1959). The results of this investigation are shownon figures 2 to 5 for com- 
parison with the predictions of the linear theory. The characteristics solution was 
carried out for an identical set of free-stream conditions to those used in the 
linear theory example, and in fact constitutes an exact numerical solution of the 
equations 3 to 7 inclusive in $ 2  above for the ‘oxygen-like ’ ideal dissociating gas. 
IC, was assumed to be a constant, however, since no reliable information exists at 
present of its temperature (and possibly also concentration) dependence. In 
view of the relatively small percentage changes in T and c in the present example, 
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this is perhaps not a serious objection, particularly since kr is unlikely to be a very 
strong function of either variable. 

The agreement between the exact and linear theories is seen to be quite 
reasonable, particularly when it is recalled that the linear theory will in any case 
overestimate the pressure drop at the corner even when the gas is chemically inert. 
The variation of pressure in the relaxation zone is predicted quite well by the 
present linear theory, as can be seen from figure 6 which shows the ratio p,,,/pwo 
plotted against x / T ,  U for the two solutions ( p ,  = pressure on the wall, pwo = pres- 
sure on the wall immediately behind the corner). With allowances for the classical 
defects in the linear theory, it would appear to give an adequate description of the 
relaxation zone behind the corner. 

Asymptote 

U +% 

I I 1 
0 0.4 0.8 1.2 1.6 2.0 

X P D O U  

FIGURE 6. Ratio of pressure on the wall pw to pressure immediately behind the 
corner pwe- o = characteristics solution. 

Appendix A 
The term ~- l {K( l  - c )  -cz }  which appears in equations (5), ( 6 )  and (7) in the 

text expresses the mass rate of production of atoms per unit mass of mixture due 
to the chemical reaction described in equation (1).  It is derived as follows. The 
net rate of production of atoms measured in moles per unit volume per unit time 
is equal to 2{k, (concentration of A,)  (concentration of A,) - kr (concentration of 
A,), (concentration of A,)},  the concentration being measured here in moles per 
unit volume. To write this result in terms of mass fractions, it  is observed that the 
mass fraction of A ,  = 1 - c ,  and the mass fraction of A,  = 1. The molecular 
weight of A ,  is the mean molecular weight of the mixture, namely WJl+ c. The 
net rate of atom production measured in terms of mass of atoms per unit mass of 
mixture per unit time is, therefore, 

At equilibrium there is no net rate of atom production, and so 

suffix e implying equilibrium. Choosing ce to be the equilibrium value at the 
actual local p and T values and making use of equation ( 1  1)  to relate pe top, it  can 
be seen that k, W,/4pkr reduces to K as given above (equation (9)). The term in 
parentheses on the right side of equation (A 1) is 7-1 as defined in equation (8). 
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The entropy equation (equation (7)) is derived from equations (14) and (15) 
giving 

The last term in parentheses in equation (A2) can be replaced by 

by equation ( 5 )  and it can be shown that 

whence the form of equation (7) follows. 

+{K( 1 - c) - c2} 

1111 -p2 = (R/W,) log {c2(1 - CWC31- c2)); 

The continuity equation in the present case can be written (see equation ( 5 7 ~ ) )  

u-+*w-+p(g+g) aP aP = 0. 
ax ay 

Writing density as a function of p, s and c, 

(ap/i3p)s,c = u;, the frozen sound speed. Using (A4) and (A3) we can now write 

Making use of equations (5) and (7), it  follows that the last term in (A5) can be 
expressed as 

p , c  

The quantity T-1(ap/as),,c{pl-p2+ T(as/ac),,,} in (A6) is written as -p in 
equation (6) in the text. The value of v given in equation (10) can be obtained 
from manipulation of the thermodynamic equation. It is then in a suitable form 
for evaluation from the thermal and caloric equations of state. Details of the 
derivation are given by Clarke ( 1 9 5 8 ~ )  but the equation of continuity was first 
given in this form by Kirkwood & Wood (1957). 

Appendix B 

that 

we can write equation (57) as 

The derivation of equation (58) from equation (57) proceeds as follows. Noting 

(B1)  
M 2  - By(B2- 1) - p = f ’  +-- 

w 2 pw 2 i+rz ‘ ~ m a  

Putting the value of C,, from equation (55) into the integral in equation (B2) 
gives a term proportional to 
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Integrating the last term above by parts yields the terms 

595 

The last integral in expression (B 4) cancels with the first integral in ekpression 
(B3). It follows from equation (B2) and equation (55) that 

(exp [- (Ba + ‘1 I, [ (B2- 1) 51) 
pw=--F 2r 2r 

e i q  
Bf 

(B2 - 1)) s,”’ exp [ - 
2 - - (1 + B; 

(B5) 

The result quoted in equation (58) follows from reorganization of the terms in 
equation (B5). 

Equation (59a) for the concentration increment can be reduced in a similar way 
to that outlined above. Thus, from equation (55) we can write the last term in 
equation (59a) as 

2e 

0 Bf 
exp ( - c/r) s”’ c,,( W )  ew d w = - - exp ( - gr) 

Integration of the last integral by parts shows that 

exp ( - gr) 1‘’’ c,,(w) ewdw 
0 

= - 28 

and the result quoted in equation (59) follows at once. 

exp [ - 3(B2 + 1) W] I0[f(B2 - 1) W] dW 
Bf 0 
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